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Abstract 

In this paper, we modeled a nano-InSb metal-insulator-semiconductor 
(MIS) capacitor with one dimensional Schrödinger-Poisson coupled 
equation in both nonrelativistic and scalar relativistic cases. We showed, 
the charge density is peaked near the middle of the channel in 
nonrelativistic case (called size quantization) and it disappears as we 
consider the scalar relativistic effects although we do not change the size. 
Consequently the electron distribution looks more classical for scalar 
relativistic case. Also we showed the existence of an effective coulomb 
(or parabola) like potential which can be created by an impurity, cleaning 
process of surface, insulator layer deposition, or misalignment in 
lithography process of gate, confines the electrons at surface and it means 
that the device always remains in the OFF regime. Therefore one may 
conclude that, in manufacturing nano-InSb MIS capacitor the cleaning 
process of InSb surface, growth process of insulator layer and lithography 
process of gate, are very important and critical processes. Also one should 
attend to classical behavior in characterization process of device although 
the size of device is in nanometer scale. 
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1. Introduction 

Starting about 20 years ago, advances in semiconductor technology allowed the 
fabrication of structures so small that their discrete quantum level structure was 
resolvable. In the past few years, powerful new spectroscopic probes have revealed a 
wealth of new physics in these “artificial atoms”. The spacing between atoms in a 
semiconductor crystal is typically about 0.3-0.4 nm. In artificial atoms, electrons are 
confines in structures about 100 nm in diameter. Thus, an artificial atom in a crystal 
comprises many real atoms and they are typically much larger than real atoms. 
Therefore the electron orbits do not simply scale with size. The separation in energy 
of the different orbits of electron in the artificial atom is another energy scale. As the 
atomic size increases, the differences in the orbital energies decrease faster than the 
coulomb energy. It follows that in a large atom, the effects of electron-electron 
interaction are relatively more important than in small atom. It may not be long 
before these distinctions affect modern electronics. As device shrink, it is already 
possible to create electronic devices small enough to have device characteristics 
sensitive to the motion of single electrons within them, even at room temperature [1, 
2]. Building devices at this size scale that have reproducible and desired electronic 
properties will be an immense challenge. The single electron transistor (SET) relies 
on the discrete nature to modulate the conductance of small, isolated volume of 
conducting material. Within this nano scale region, known as a quantum dot, the 
confinement in all three dimensions is sufficiently strong that the electrons may only 
exist at well-defined quantized energies. The confining potential may be created 
either by the physical dimensions of the dot [3, 4, 5], or by inducing an electrostatic 
potential at the surface of a semiconducting hetero structure [6]. The use of the spin 
quantum number of a single confined electron has been demonstrated as a ‘quantum 
bit’ in such semiconductor systems [7]. Of all the III-V semiconductors InSb offers 
the smallest electron effective mass, the highest mobility and the largest g-factor. 
The large g-factor has important implication for potential spin-to-charge readouts of 
quantum bits [8] and also offers the possibility of localized quantum bit addressing 
[9]. Therefore we studied InSb. Generally quantum dot is located between two 
capacitor plates in vertical SET [4, 5]. It is close enough to one of the plates to allow 
single electrons to tunnel (or hope) between the artificial atom and the nearby plate. 
The artificial atom is far enough from the other capacitor plate to prohibit tunneling 
to this pale. But the generic structure of ‘nano transistor’ consists of a semiconductor 
channel separated by an insulator layer from metallic gate. The two contact pads are 
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source and drain and the resistance of the channel determines the current that flows 
from the source to the drain when a voltage is applied between them. The gate 
voltage is used to control the electron density in the channel and hence its resistance. 
If one shorts drain pad to source the quantum electron density function, along 
quantization axis, is very important function in studying the charge transport 
phenomena in FET. In fact after shorting the drain to source, the FET looks like a 
MIS quantum capacitor along quantization axis. Therefore we studied quantum 
electron density of MIS capacitor. But for studying the subject, one requires the self-
consistent solution of the Schrödinger equation and the Poisson equation. A self-
consistent solution of Schrödinger-Poisson equations using a nonuniform mesh was 
used for studying planar epitaxial structures [10]. A numerical Schrödinger-Poisson 
solver was used for studying radially symmetric nano wire core-shell structures [11]. 
Three dimensional self-consistent solutions of Poisson and Schrödinger equation 
was used for studying electrostatically formed quantum dot [12] and Boudib et al., 
used computational method for solving the Poisson-Schrödinger equation in 
studying the semiconductor field effect transistor nano structure [13]. Therefore we 
used finite difference method for solving the Poisson-Schrödinger equation. The 
effects of the optical response properties of InSb after including scalar relativistic 
zeroth-order regular approximation (ZORA) in the ground-state density functional 
theory, as well as in the time-dependent response calculations was studied by 
Kootstra et al. [14]. Also it was shown the overestimated values of band gap of InSb 
can be decreased by considering the relativistic effects and in some cases InSb 
crystal even to be a semimetal [14, 15]. In this article we modeled a nano-InSb 
metal-insulator-semiconductor (MIS) capacitor with one dimensional Schrödinger-
Poisson coupled equation in both nonrelativistic and scalar relativistic cases. We 
showed, the charge density is peaked near the middle of the channel in 
nonrelativistic case (called size quantization) and it disappears as we consider the 
scalar relativistic effects although we do not change the size. Consequently the 
electron distribution looks more classical for scalar relativistic case. Also we showed 
the existence of an effective coulomb (or parabola) like potential which can be 
created by an impurity, cleaning process of surface, insulator layer deposition, or 
misalignment in lithography process of gate, confines the electrons at surface and it 
means that the device always remains in the OFF regime. 

Therefore one may conclude that, in manufacturing nano-InSb MIS capacitor 
the cleaning process of InSb surface [16, 17], growth process of insulator layer [18] 
and lithography process of gate, are very important and critical processes. Also one 



H. SIMCHI et al. 102 

should attend to classical behavior in characterization process of device although the 
size of device is in nanometer scale. 

2. Theory 

An MIS capacitor comprises an InSb layer which was sandwiched between two 
insulator layers. The dimension in x and y-direction are enough large and in 
z-direction is enough small. Now the Schrödinger equation can be written as below 
in effective mass approximation [19]: 
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where em  is effective mass and xk  and yk  are momentum in x and y directions 

respectively. This is a one dimensional equation that can be numerically solved for 
given value of xk  and .yk  By replacing the kinetic-energy operator by the ZORA 

term [14]: 
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in which ,∇−= ip  c is the velocity of light, and ( )Zeffν  is the self-consistent 

effective potential, the ground-state ZORA equation is [14]: 

( )
( ) .

2 2

22

ααα ψε=ψ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ν+∇

ν−
⋅∇− r

rcm
c

eff
effc

 (2.3) 

Of course it should be solved in one direction (i.e. z-direction). The effective 
potential, ,effv  is lattice periodic and comprises the gate voltage, coulomb and 

exchange-correlation contributions. 

The Poisson equation is: 
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which rε  is the relative permittivity, ( )rn  and 0n  are electron density at point r and 

equilibrium respectively. Of course it should be solved in one direction (i.e. z-
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direction) self-consistently with one dimensional Schrödinger equation (2.1) in 
nonrelativistic case and equation (2.3) in relativistic case. 

The density matrix rho at equilibrium can be written as the Fermi function of the 
Hamiltonian matrix as below [14]: 

( ),0 IHf μ−=ρ  (2.5) 

where H is Hamiltonian, μ is Fermi energy ( )fE  and I is the identity matrix of same 

size as H. It can be shown; the electron density is given by diagonal elements of rho 
[14]: 

( ) ( )[ ] ., rrrrrn ′=′ρ=  (2.6) 

3. Finite Difference Method 

We considered the device with structure as insulator (3.75 nm)-InSb (2.5 nm)-
insulator (3.75) in z-direction and the dimension in x and y-directions are enough 
large. The total dimension of device is 10 nm. We divided the 10 nm length to 200 
pieces and therefore first insulator layer consists 75 pieces, InSb consists 50 pieces 
and second insulator layer consists 75 pieces. The length of each piece is 0.05 nm. 
The gate voltage is equal to 0.25V, and kT is equal to 0.025V. Also we assumed the 
bottom of conduction band, ,cE  is equal to zero and three electron volts in 

semiconductor and insulators respectively and the electrochemical potential, ,μ  is 

equal to .cE  

For nonrelativistic case the Hamiltonian is [14, 20]: 

[ ] ,2 1,01,0,0, −+ δ−δ−δ+= mnmnmnnmn tttUH  (2.7) 

where ( ) ( )22
0 2mahbart =  and a is the length of each piece. 

For relativistic case, one can show the equation is [20]: 
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Also we can write the Poisson equation as below [14, 20]: 

[ ] ( ).2 0
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We assumed the electrons are affected by a coulomb like potential, r1  (or parabola 

like, )1 2r  in z-direction. The effective potential can be made by a positive impurity 

atom which is placed at center of the z-axis or at surface (or it may be made by fork-
gate [21, 22]). 

Therefore the effective potential comprises the gate voltage, and coulomb 
(parabola) like contributions. At first, we found the Hamiltonian matrix in both 
nonrelativistic and relativistic cases. Then we solved Schrödinger-Poisson coupled 
equation self-consistently and find rho matrix. The diagonal rho matrix is the 
electron density function. 

4. Results and Discussion 

The electron density function is shown in Figure 1a (nonrelativistic case) and 1b 
(relativistic case) and the equilibrium band diagram is shown in Figure 2a 
(nonrelativistic) and 2b (relativistic) when the impurity is at the center of x axis. 

Also the electron density function is shown in Figure 3a (nonrelativistic case) 
and 4a (relativistic case) and the equilibrium band diagram is shown in Figure 3b 
(nonrelativistic) and 4b (relativistic) when the impurity is at the surface. 

In nonrelativistic case, the energy levels in z-direction are quantized and the 
energy levels get closer together when we make the channel wider. Consequently the 
electron distribution looks more classical for wide channel [19]. Previously it was 
shown [14, 15] that the calculated band gap of InSb coincides more with 
experimental data (i.e. smaller band gap) when the scalar relativistic effect is added 
to Hamiltonian. In the other words, the overestimation will be decreased. Similarly 
one can assume when effective potential is placed at the center of the z-axis, in 
relativistic case the energy difference between neighborhood levels decreases in 
z-direction, and it makes the electron distribution looks more classical (similar to 
wide channel). In the other words the energy levels get closer together in this case. 
Therefore one may conclude that the classical behavior of device can be the reason 
for gate failure in reported works [22]. 
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Now consider the effective potential is placed at surface. It can be done if some 
impurities atoms or dangling bands are place at the surface. Also if there is a 
misaligning in lithography process and fork-gate close to surface boundaries. As 
figures three and four show, the charge is confined at surface. It means that, the 
device always remains in OFF regime. It was shown that after cleaning the InSb 
surface the indium and antimony oxides are made on the surface [16, 17]. These 
compositions can create dangling energy levels in band energy diagram. Also it was 
shown the growth process of an insulator layer on InSb surface can creates dangling 
energy levels in band diagram [18]. Therefore these process or lithography can be 
the source effective potential at surface. Then one may conclude that the classical 
behavior of device can be the reason for gate failure in reported works [22]. 

5. Conclusion 

In some previous works [22], the low yield of manufacturing process and gate 
failure mechanism were reported as main problems in manufacturing InSb SET. In 
this article we showed the importance of considering the scalar relativity effect in 
InSb [14, 15] can be considered as a source for these problems. In the other words, 
we added the scalar relativistic effect to Hamiltonian and showed the InSb MIS 
capacitor behaves as a classical capacitor although its total length is 10 nm. Also 
based on the results of reported works [15, 16, 17, 18] the cleaning process, and 
insulator deposition process can make dangling energy levels in band diagram. 
These effects and misalignment in lithography can be modeled by an effective 
potential at the surface of the device. In these cases we showed the electrons are 
confined at surface and the device always remains at the OFF regime. 
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Figure 1a. Electron density in the case of nonrelativistic Hamiltonian including 
coulomb like potential effv(  is at center). 

 

Figure 1b. Electron density in the case of scalar relativistic Hamiltonian including 
coulomb like potential effv(  is at center). 

 

Figure 2a. The equilibrium band diagram in nonrelativistic case effv(  is at center). 
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Figure 2b. The equilibrium band diagram in relativistic case effv(  is at center). 

 

Figure 3a. Electron density in the case of nonrelativistic Hamiltonian including 
coulomb like potential effv(  is at surface). 

 

Figure 3b. The equilibrium band diagram in nonrelativistic case effv(  is at surface). 
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Figure 4a. Electron density in the case of relativistic Hamiltonian including 
coulomb like potential effv(  is at surface). 

 

Figure 4b. The equilibrium band diagram in relativistic case effv(  is at surface). 


